Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode.

نویسندگان

  • Long Yang
  • Hui Zhao
  • Yucong Li
  • Xin Ran
  • Guogang Deng
  • Yanqiong Zhang
  • Hanzhang Ye
  • Genfu Zhao
  • Can-Peng Li
چکیده

A novel electrochemical method has been developed towards cholesterol detection based on competitive host-guest interaction by selecting methylene blue (MB) and calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". In the presence of cholesterol, the MB molecules are displaced by cholesterol in the CX6-Gra.MB complex, leading to a "switch off" electrochemical response. A linear response range of 0.50 to 50.00 μM for cholesterol with a low detection limit of 0.20 μM (S/N = 3) was obtained by using the proposed method. This method could be successfully utilized to detect cholesterol in serum samples, and may be expanded to the analysis of other non-electroactive species. Besides, the host-guest interaction between cholesterol and CX6 was studied by molecular modeling calculations, which revealed that the complexation could reduce the energy of the system and the complex of a 1 : 1 host-guest stoichiometry had the lowest binding free energy of -8.01 kcal mol(-1). In addition, the constructed electrochemical sensing platform is important as it does not use any enzyme or antibody for the detection of cholesterol efficiently and selectively over common interfering species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Calix[4]arene triazole-linked pyrene: click synthesis, assembly on graphene oxide, and highly sensitive carbaryl sensing in serum.

A fluorescent calix[4]arene triazole-linked pyrene (CP) was carefully designed and synthesized via click chemistry. The modification of CP with graphene oxide (GO) by a simple non-covalent interaction strategy is presented. Further inspection by electrochemical impedance spectroscopy reveals that the CP-GO could exhibit a very high supramolecular recognition for carbaryl, in particular in serum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 141 1  شماره 

صفحات  -

تاریخ انتشار 2016